مقاله user865

جدول 4-5- کارایی واحدها در سال 92 و 93 ........................................................................................75
جدول 4-6- کارایی AP در سال 92..........................................................................................................75
جدول 4-7- کارایی AP در سال 93..........................................................................................................75
جدول4-8- ورودی ANN در سال 92........................................................................................................79
جدول4-9- ورودی ANN در سال 93........................................................................................................79
جدول 4-10- نرمال سازی داده ها ............................................................................................................79
جدول 4-11- داده های نرمال شده ............................................................................................................80
جدول 4-12- اندیس های مربوط به آموزش ..............................................................................................81
جدول 4-13- اندیس های مربوط به تست .................................................................................................81
جدول 4-14- داده های ورودی و خروجی آموزش .....................................................................................81
جدول 4-15- داده های ورودی و خروجی تست .........................................................................................82
جدول 4-16- ارزیابی شبکه آموزش دیده ..................................................................................................82
جدول 4-17- صحت فرایند آموزش ...................................................................................................83
جدول 4-18- خروجی شبیه سازی شده و واقعی برای تست .............................................................83
جدول 4-19- میانگین مربعات خطا ..................................................................................................83
جدول 4-20- میانگین مقایسه کارایی خروجی ANN و DEA سال 92 ...........................................85
جدول 4-21- میانگین مقایسه کارایی خروجی ANN و DEA سال 93 ...........................................85
فصل اولکلیات تحقیق1-1- مقدمهاندازه گیری کارایی به خاطر اهمیت آن در ارزیابی عملکرد یک شرکت یا سازمان همواره مورد توجه محققین قرار داشته است . در سال 1957 فارل با استفاده از روشی مانند اندازه گیری کارایی در مباحث مهندسی اقدام به اندازه گیری کارایی برای یک واحد تولیدی نمود .موردی که فارل برای اندازه گیری کارایی مد نظر قرار داده بود شامل یک ورودی و یک خروجی بود . مطالعه فارل شامل اندازه گیری "کارایی های فنی " و " تخصیصی " و " مشتق تابع تولید کارا " بود . فارل مدل خود را برای تخمین کارایی بخش کشاورزی آمریکا نسبت به سایر کشورها مورد استفاده قرار داد. با این وجود او در ارائه روشی که در برگیرنده ورودی ها و خروجی های متعدد باشد ، موفق نبود .]1[
"چارنز " ، " کوپر " ، " رودز " دیدگاه فارل را توسعه داده و مدلی را ارائه کردند که توانایی اندازه گیری کارایی با چندین ورودی و چندین خروجی را داشت . این مدل تحت عنوان " تحلیل پوششی داده ها " نام گرفت و ایتدا در رساله دکتری " ادوارد رودز " و به راهنمایی " کوپر " تحت عنوان " ارزیابی پیشرفت تحصیلی دانش آموزان مدارس ملی آمریکا " در سال 1976 در دانشگاه کارنگی مورد استفاده قرار گرفت و در سال 1978 در مقاله ای تحت عنوان " اندازه گیری کارایی واحدهای تصمیم گیرنده " ارائه شد .
از آنجا که این مدل توسط " چارنز " ، " کوپر " و " رودز " ارائه گردید به مدل CCR که از حروف اول نام سه فرد فوق تشکیل شده است معروف گردید . هدف در این مدل اندازه گیری و مقایسه کارایی نسبی واحدهای سازمانی مانند مدارس ، بیمارستان ها ، شعب بانک ، شهرداری ها و ... که دارای چندین ورودی و خروجی شبیه بهم باشند .]2[
کاربرد گاز طبیعی به عنوان سوخت حرارتی تنها قسمتی از موارد متنوع کارایی این ماده گرانقدر به شمار می رود .اهمیت اصلی و واقعی گاز طبیعی با توجه با ارزش افزوده فراوان و قابلیت تبدیل به هزاران نوع کالای با ارزش اقتصادی در بخش صنعت و پتروشیمی ظاهر می شود .
نیاز روزافزون به گاز برای تامین انرژی و سوخت و همینطور ارز حاصل از فروش و صادرات برای سرمایه گذاری و راه اندازی صنایع مادر و زیربنایی کشور ، اندیشه تمرکز بخشیدن فعالیت های مرتبط با صنعت گاز را تقویت کرده و در این رابطه طبق اساسنامه قانونی ، شرکت ملی گاز ایران به عنوان یکی از چهار شرکت وابسته به وزارت نفت ایران با سرمایه اولیه 25 میلیارد ریال در سال 1344 هجری شمسی تأسیس گردید .
در این میان پالایشگاه های گاز نقش بسیار مهمی در فرآیند تصفیه گاز ، تولید محصولات جانبی ، تأمین گاز کشور و درآمد حاصل از فروش و صادرات آن به عهده دارند . ظرفیت پالایش و نم زدائی گاز طبیعی ایران با برخورداری از متوسط رشد سالانه 9 درصدی در دهه اخیر در سال 1391 به 428 میلیون متر مکعب در روز رسیده است . با توجه به تمرکز قابل ملاحظه میادین گاز کشور در مناطق جنوبی امکانات پالایشی و نم زدائی کشور نیز عمدتا در این ناحیه مستقر می باشند. پالایشگاه بید بلند با ظرفیت 22.5 میلیون متر مکعب در روز پالایشگاه فجر با ظرفیت 110 میلیون متر مکعب در روز و پالایشگاه سرخون با ظرفیت 7.1 میلیون متر مکعب ظرفیت نم زدائی در مناطق جنوبی و پالایشگاه شهید هاشمی نژاد با ظرفیت 44.5 میلیون متر مکعب در روز در شمال شرق کشور از جمله مهمترین تاسیسات پالایشی کشور به شمار می روند.
بدیهی است که ایجاد یک نظام کارا و استفاده بهینه از منابع باعث جلوگیری از هرز رفت مبالغ عظیمی از منابع مادی و معنوی می گردد به طوری که می تواند با درصد کمی افزایش در کارایی صرفه جویی زیادی حاصل گردد.لذا مطالعه سطح بهره وری پالایشگاه های گاز کشور کاملا ضروری است .برای رسیدن به این هدف لازم است ابتدا عملکرد پالایشگاه های گاز مورد ارزیابی و تحلیل قرار گرفته و سپس پالایشگاههایی که کارا نیستند مشخص و علل عدم کارایی آن ها را تعیین و نسبت به رفع آن اقدام نمود .
به عنوان یک اصل عملکرد هر واحد سازمانی و یا سازمان تا آنجا که میسر است باید اندازه گیری شود . وجود و یا عدم وجود نظام ارزیابی عملکرد موثر و کارآمد با مرگ سازمان رابطه ی مستقیم دارد و فقدان آن را به عنوان بیماری سازمانی قلمداد نموده اند . بدون اندازه گیری ، مبنایی برای قضاوت و اظهارنظر و ارزیابی وجود نخواهد داشت آن چه را که نتوان ارزیابی نمود نمیتوان به خوبی اداره کرد . هر سازمانی برای اعمال مدیریت صحیح باید از الگوهای علمی ارزیابی عملکرد بهره گیرد تا بتواند میزان تلاش و نتایج حاصل از کارکرد خود را مورد سنجش قرار دهد . تنوع وظایف سازمانی اعم از وظایف عمومی و اختصاصی به پیچیدگی ارزیابی آن ها می افزاید و استفاده از ابزارهای کارامد علمی را برای محقق ساختن یک ارزیابی واقعی از هر دو بعد عملکردی و سیاست گذاری اجتناب ناپذیر می کند . یکی از ابزار های کارامد که این مهم را محقق ساخته تحلیل پوششی داده هاست که چهارچوب نظام ارزیابی عملکرد با استحکامی را در خود تدارک می بیند .
لذا در نظر است مقایسه ای بین عملکرد پالایشگاه های گاز کشور انجام گیرد و از میان آن ها پالایشگاه های با کارایی بالاتر را انتخاب نمود . مضافاٌ این که می توان آن ها را به عنوان واحدهای کارا و ناکارا دسته بندی کرد و در صورت امکان برای واحدهای ناکارا راه حل مناسب ارائه نمود .]15[
1-2- تعریف مسأله
یکی از عمده ترین مشکلات استفاده از " تحلیل پوششی داده ها " ضعف قدرت تفکیک پذیری برای " واحد های تصمیم گیرنده " است . این مشکل عمدتاٌ به علت کم بودن تعداد واحد ها در مقایسه با تعداد ورودی ها و خروجی ها ی مدل می باشد . این مشکل در ارزیابی عملکرد 6 پالایشگاه گاز کشور با توجه به تعداد زیاد ورودی ها و خروجی های هر پالایشگاه گاز به خوبی خود را نمایان می کند .بر این اساس و برای رفع این اشکال مدل تلفیقی از شبکه های عصبی مصنوعی و تحلیل پوششی داده ها در این تحقیق مورد استفاده قرار گرفته است که موجب افزایش قدرت تفکیک پذیری مناسب پالایشگاه ها شد .
ارزیابی عملکرد شرکت ها همواره از مسأله های چالش برانگیز در حوزه ی های مدیریت بوده است . اندازه گیری کارایی خصوصا در دو دهه ی اخیر ، به علت اهمیت آن در ارزیابی عملکرد ، مورد توجه زیادی قرار گرفته است . از سال 1957 که فارل روشی را برای اندازه گیری کارایی مطرح کرد تا کنون بازنگری های جامع و اساس در موضوع اندازه گیری کارایی صورت گرفته است .همچنین دیدگاه های پارامتری و غیر پارامتری به طور گسترده ای در ارزیابی کارایی مورد استفاده قرار می گیرند .ضمن اینگه دیدگاه های اولیه عمدتاٌ شامل مرزهای قطعی و مرزهای تصادفی بوده و بعدها دیدگاه هایی مثل DEA و FDH نیز مطرح شده است .
روش های بسیاری برای اندازه گیری کارایی در تحقیقات مربوط مطرح شده است .اما در مقایسه ی بین تمامی مدل های فوق ، DEA روش بهتری برای سازماندهی و تحلیل داده هاست . زیرا اجازه می دهد که کارایی در طول زمان تغییر کند و به هیچ گونه پیش فرضی در مورد مرز کارایی نیاز ندارد . با این وجود مرز کارایی که از DEA حاصل شده نسبت به اغتشاش آماری و داده های پرت که در اثر خطای اندازه گیری یا هر عامل خارجی دیگر ایجاد شود ، حساس است و اگر در داده ها اغتشاش آماری یا داده های پرت وجود داشته باشد ممکن است موجب شود تا مرز کارایی به دست آمده جا به جا شود و مسیر تحلیل های DEA را منحرف سازد . وجود این مسأله باعث شده است که اخیراٌ شبکه های عصبی مصنوعی به عنوان جایگزین خوبی برای برآورد مرزهای کارا جهت تصمیم گیری به کار گرفته شود . ] 2 [
لذا در این مقاله سعی شده است معیار های ارزیابی عملکرد پالایشگاه های گاز کشور تعیین و با استفاده از مدل ترکیبی Neuro-DEA با اندازه گیری کارایی و تعیین پالایشگاه های کارا و ناکارا و کمک به بهینه سازی شرکت ملی گاز ایران از طریق نظام ارزیابی عملکرد و رتبه بندی پالایشگاه های گاز کشور کمک نمود .
1-3- اهداف اساسی از انجام تحقیق
هدف اولیه این تحقیق طراحی و تبیین مدل ارزیابی عملکرد و کارایی پالایشگاه های گاز کشور می باشد . از دیگر اهداف تحقیق می توان به موارد زیر اشاره کرد :
تعیین معیارهای ارزیابی عملکرد پالایشگاه های گاز کشور
اندازه گیری کارایی پالایشگاه های گاز کشور و تعیین شرکت های کارا و ناکارا
کمک به بهینه سازی شرکت ملی گاز ایران از طریق نظام ارزیابی عملکرد و رتبه بندی پالایشگاه های گاز کشور
1-4- ضرورت انجام تحقیق
با توجه به اهمیت کارایی در پیشبرد جوامع و جایگاهی که در میان سایر علوم به خود اختصاص داده است بررسی همه جانبه آن ، به ویژه تحلیل ابعاد ریاضی آن به عنوان معیاری برای سنجش عملکرد ضرورتی اجتناب ناپذیر می باشد .
لذا محاسبه کارایی ، ارزیابی و رتبه بندی تمام شعب و ادارات زیر مجموعه یک خدمت یا صنعت ، کاری ضروری است ، و لازم است حداقل سالی یکبار عملکرد آن ها را بر پایه اصول علمی مورد ارزیابی قرار داد .
صنعت نفت و گاز به عنوان یکی از اساسی ترین صنایع ایران از حساس ترین و مهم ترین منابع درآمد دولت به شمار می رود . بدیهی است وجود کارایی مناسب در این صنعت عایدات دولت را چندین برابر می نماید و این مهم جز با ارزیابی دقیق و صحیح واحدهای تحت پوشش میسر نمی شود .
1-5- فرضیات تحقیق
از آنجایی که هدف ارزیابی عملکرد و کارایی پالایشگاه های گاز کشور با مدل ترکیبی Neuro /DEA یا برخی تکنیک های آماری می باشد لذا این تحقیق فاقد فرضیه می باشد .] 2 [
1-6- جامعه آماری
جامعه آماری این مقاله ، پالایشگاه های گاز کشور (6 پالایشگاه ) که در حال حاضر در کشور در حال فعالیت هستند .
1-7- قلمرو تحقیق
1-7-1- قلمرو موضوعی :
قلمرو موضوعی تحقیق در حوزه ارزیابی عملکرد بر مبنای مدل های DEA و شبکه عصبی می باشد .
1-7-2- قلمرو مکانی :
قلمرو مکانی تحقیق پالایشگاه های گاز کشور می باشد که در حال حاضر 7 پالایشگاه در سطح کشور مشغول به فعالیت هستند .
1-7-3- قلمرو زمانی :
در این تحقیق ، اطلاعات جمع آوری شده پالایشگاه های کشور در اردیبهشت ماه سال های 92 و 93 مینای ارزیابی عملکرد قرار گرفته است .
1-8- مراحل انجام تحقیق :مطالعات کتابخانه ای در مورد موضوع تحقیق
تعیین شاخص های ورودی و خروجی مقاله از طریق نظر خبرگان
مطالعه علمی روی مدل ها و تکنیک های ارزیابی و اندازه گیری کارایی
انتخاب مدل و رویکرد مناسب جهت بررسی و اندازه گیری کارایی پالایشگاه های گاز کشور
طراحی مدل های پارامتری و اندازه گیری کارایی پالایشگاه های مورد نظر
اندازه گیری کارایی پالایشگاه ها با روش DEA و Neuro-DEA
مقایسه ی نتایج حاصل از این دو روش
فصل دوممرور ادبیات و بررسی پیشینه ی تحقیق2-1- مقدمه
همانطور که قبلاٌ گفته شد ، باید در استفاده از DEA برای ارزیابی عملکرد سایر واحدهای تصمیم گیرنده احتیاط کرد . وجود این مسأله باعث شده است که اخیراٌ شبکه های عصبی مصنوعی به عنوان جایگزین خوبی برای برآورد مرزهای کارا جهت تصمیم گیری به کار گرفته شود .زیرا ماهیت عملکرد شبکه های عصبی به دلیل قدرت یادگیری و تعمیم پذیری به گونه ای است که در برابر داده های پرت و اغتشاشات حاصل از اندازه گیری غیر دقیق داده ها مقاوم تر عمل می کنند .در زیر مختصری راجع به تحلیل پوششی داده ها و شبکه های عصبی مصنوعی می پردازیم . ]2[
2-2- تعاریف کارایی2-2-1- تعریف کارایی اقتصادی
کارایی اقتصادی عبارت است از نسبت میزان محصول تولیدی قابل استفاده به میزان منابع تولیدی که برای ساخت آن محصول به کار گرفته شده است.(کارایی برحسب میزان محصول)
کارایی هرسیستم برحسب ارزش محصول به دست آمده درازای ارزش هرواحد از منابع تولید به کار رفته اندازه گیری می شود. (کارایی برحسب قیمت وارزش )
کارایی اقتصادی دریک موسسۀ تولیدی متضمن حل دو مسئلۀ " انتخاب ترکیب مناسبی ازمنابع تولیدی" و " انتخاب روش وطریقۀ تولید" است .]5[
2-2-2- تعریف کارایی فنی وتخصیصی
همان گونه که در تعاریف بالا ملاحظه می شود، کارایی اقتصادی شامل دوجزء کارایی فنی وکارایی اقتصادی می باشد. فارل کارایی اقتصادی را شامل دوجزء زیر تعریف می کند:
1- کارایی فنی منعکس کننده توانایی یک بنگاه در به دست آوردن حد اکثر خروجی از ورودی های به کار گرفته شده است.
2- کارایی تخصیصی منعکس کننده توانایی یک بنگاه برای استفاده از ورودی ها به نسبت بهینه با توجه به قیمت و فناوری تولید است.
ترکیب دو کارایی فنی وتخصیصی را ، کارایی اقتصادی می نامند . ]9[
2-3- روش های اندازه گیری کارایی فنیبه طورکلی دراندازه گیری کارایی بنگاه ها( واحد ها ) دوروش عمده برای اندازه گیری کارایی وجوددارد. یکی روش های پارامتری ودیگری روش های ناپارامتری .
2-3-1- روش های پارامتریدرروش پارامتری با استفاده از روش های مختلف آماری واقتصاد سنجی تابع تولید مشخصی تخمین زده می شود. سپس با به کارگیری این تابع نسبت به تعیین کارایی اقدام می شود. روش رگرسیون از جمله روش های پارامتری است.
2-3-2- روش های نا پارامتریروش های ناپارامتری به تخمین تابع تولید نیاز ندارند. ازجمله روش های ناپارامتری تحلیل پوششی داده ها است ،که کارایی نسبی واحد ها را درمقایسه با یکدیگر مورد ارزیابی قرار می دهد. دراین روش به شناخت شکل تابع تولید نیازی نیست و محدودیتی درتعداد ورودی ها و خروجی ها وجود ندارد. ]9[
2-4- مقایسۀ رگرسیون وتحلیل پوششی داده هاروش رگرسیون میانگین مشاهدات مربوط به واحدها را تعیین وعملکرد هر واحدرا نسبت به یک معادلۀ رگرسیون بهینه شده ، مشخص می کند. تحلیل پوششی داده ها از تمامی مشاهدات گردآوری شده برای اندازه گیری کارایی استفاده کرده وهرکدام از مشاهدات را درمقایسه با مرز کارا سنجیده وآن را بهینه می نماید. روش تحلیل پوششی داده ها باترکیب تمامی واحد های تحت بررسی، یک واحد مجازی بابالاترین کارایی را می سازد وواحد های نا کارا را با آن مقایسه می کند. شکل زیر تفاوت این دو روش را نشان می دهد .]1[

شکل 1 -1- مقایسه رگرسیون و تحلیل پوششی داده ها
2-5- مفاهیم کارایی2-5-1- تعریف کارایی
کارایی میزان بهره وری یک سازمان از منابع خود درعرصۀ تولید نسبت به بهترین عملکرد در مقطعی از زمان است. کارایی با نسبت خروجی واقعی به خروجی مورد انتظار تعریف می شود، یعنی :

2-5-2- انواع کارایی ها :
کارایی درانواع زیر تعریف می شوند:
2-5-2-1- کارایی فنی :
کارایی فنی میزان تبدیل ورودی هایی مانند نیروی انسانی وماشین آلات به خروجی ها، درمقایسه با بهترین عملکرد است.
کارایی فنی نشان دهنده میزان توانایی یک بنگاه برای حداکثر کردن میزان تولید با توجه به منابع وعوامل مشخص شده تولید است. درتحلیل پوششی داده ها کارایی فنی با نسبت مجموع موزون خروجی ها به ورودی ها تعریف می شود. دراقتصاد زمانی یک بنگاه را به لحاظ فنی کارا می دانند که مقدار تولید آن برروی منحنی تولید یکسان قرار گیرد.
2-5-2-2- کارایی تخصیصی
کارایی تخصیصی بر تولید بهترین ترکیب محصولات با استفاده از کم هزینه ترین ترکیب ورودی ها دلالت می کند. درواقع کارایی تخصیصی به این پرسش پاسخ می دهد که آیا قیمت ورودی های مورد استفاده به گونه ای هست که هزینۀ تولید را حداقل نماید.
2-5-2-3- کارایی ساختاری
کارایی ساختاری معمولا برای یک صنعت تعریف می شود. کارایی ساختاری یک صنعت از متوسط وزنی کارایی شرکت های مختلف آن صنعت به دست می آید. با استفاده از معیار های کارایی ساختاری می توان کارایی صنایع مختلف با محصولات متفاوت را با هم مقایسه نمود.
2-5-2-4- کارایی مقیاس
کارایی مقیاس یک واحد ازنسبت کارایی مشاهده شده آن واحد به کارایی درمقیاس بهینه (به کارایی واحدی که بهترین کارایی را دارد) به دست می آید . هدف این کارایی ، تولید درمقیاس بهینه است . ]1[
2-6- استفاده ازنسبت دراندازه گیری کاراییهمان گونه که درمفهوم کارایی بیان شد ، کارایی به صورت نسبت خروجی به ورودی به صورت زیرتعریف می شود :

با توجه به رابطۀ فوق برای بهبود کارایی یک بنگاه یا واحد صنعتی پنج روش زیر وجود دارد:
الف- افزایش ورودی وبه دست آوردن خروجی بیشتر
ب - ثابت نگه داشتن ورودی وافزایش خروجی
ج- کاهش ورودی وکاهش کمتر خروجی
د- کاهش ورودی وثابت نگه داشتن خروجی
ه- کاهش ورودی وافزایش خروجی
نسبت فوق درمقایسۀ کارایی واحد هایی که فقط ازیک ورودی ویک خروجی استفاده می کنند، آسان است. ولی این گونه واحد ها درعمل بسیار نادرند. عموما واحد ها ازتعداد زیادی ورودی وخروجی استفاده می کنند. ]1[
2-7- انواع مدل های پایه ای (کلاسیک) تحلیل پوششی داده ها :تحلیل پوششی داده ها دارای مدل های پایه ای به شرح زیراست:
مدل CCR
مدل BCC
مدل جمعی SBM
که درزیر به تشریح هریک آن ها پرداخته می شود.
2-7-1- مدل CCR :مدل CCR دریک دسته بندی کلی به فرم کسری وفرم خطی تقسیم می شود . مدل CCR در فرم خطی به مدل CCR ورودی محور و مدل CCR خروجی محور تقسیم می شود .
مدل CCR ورودی محور خود در سه فرم کسری، مضربی، وپوششی طبقه بندی می گردد .
مدل CCR خروجی محور نیز دارای فرم های مضربی وپوششی می باشد.
در زیر انواع فرم های CCR تشریح می شوند :
2-7-1-1- مدل CCR در فرم کسری
اگر هدف ، بررسی کارایی n واحد تصمیم گیرنده یا DMU باشد که هر واحد دارای m ورودی و s خروجی به صورت زیر باشند :

می باشد . کارایی واحد j ام به صورت زیر محاسبه می شود :
1687830270124 (1)
(1)
lefttop00

که ur و vi به ترتیب وزن های خروجی و ورودی واحد j ام می باشند .
برای ساختن مدل ، فرض کنید n واحد تصمیم گیرنده (DMU) موجود است و هدف ارزیابی واحد تحت بررسی ( واحد صفر یا واحد تصمیم گیرنده ) است ، که ورودی های x10 ، x20 ، ... و xm0 را برای تولید y10 ، y20 ، و ... ys0 به مصرف می رساند .
حال برای واحد صفر ، یک واحد مجازی می سازیم که ورودی وخروجی آن به صورت زیر است:
lefttop(2)
(3)
که vi وزن های ورودی و ur وزن های خروجی واحد مجازی است ، که در واقع متغیرهای تصمیم مدل بوده و هدف تعیین آن هاست . ]1[
حال می خواهیم مقادیر vi و ur را برای واحد مجازی صفر ( واحد تحت بررسی ) طوری انتخاب کنیم که کارایی آن ماکسیمم شود ، یعنی :
3342640257810 (4)
(4)
476251016000

در مدل فوق اگر ur ها خیلی بزرگ و vi ها خیلی کوچک باشند ، آنگاه مقدار نسبت ها می تواند نامحدود وبی نهایت گردد. برای جلوگیری از ایجاد چنین مشکلی تمامی نسبت ها (کارایی همۀ واحدها) را کوچکتر یا مساوی یک درنظر می گیرند وبه عنوان محدودیت وارد مدل می کنند. با توجه به توضیحات فوق مدل کلی CCR در فرم کسری به صورت زیر در می آید :
42618991017767 (6)
(6)
4261899159026(5)
(5)

2-7-1-2- مدل CCR در فرم خطی
برای تبدیل مدل کسری CCR ، به یک مدل برنامه ریزی خطی ، چارنز، کوپر و رودز دو شیوه ، را به کار گرفته اند. درشیوه اول مخرج کسر را ثابت درنظر گرفته وصورت آن را حد اکثر می نمایند. مدل حاصل از این شیوه را مدل ورودی محور (نهاده گرا) می نامند. درشیوه دوم صورت کسر را ثابت نگهداشته ومخرج آن را حد اقل می کنند. مدل حاصل از این شیوه را مدل خروجی محور (ستاده گرا) می گویند.]1[
2-7-1-3- مدل CCR ورودی محور
مدل های ورودی محور دریک تقسیم بندی به دو گروه مدل های مضربی ومدل های پوششی تقسیم می شوند، که درادامه به تشریح آن ها می پردازیم.
2-7-1-4- مدل مضربی CCR ورودی محور
دراین روش برای تبدیل مدل نسبت CCR به مدل برنامه ریزی خطی ، مخرج کسر را معادل یک، قرار می دهیم وصورت کسر را ماکسیمم می نماییم. بدین ترتیب مدل به صورت زیر درمی آید:

2-7-1-5- مدل پوششی CCR ورودی محور
قبلا مدل مضربی CCR ورودی محور به صورت زیر ارائه گردید :

درمدل فوق برای هر واحد تصمیم گیرنده، باید یک محدودیت (قید) نوشته شود. به این ترتیب ، یک مدل برنامه ریزی خطی به دست خواهد آمد که تعداد محدودیت های آن از تعداد متغیر هایش بیشتر است. ازآن جا که حجم عملیات در روش سیمپلکس برای حل مسایل برنامه ریزی خطی بیشتر وابسته به تعداد محدودیت ها است تا تعداد متغیرها . به همین دلیل از مدل دوگان (ثانویه) مسئلۀ فوق استفاده می شود که نیازمند حجم عملیات کمتری است.
برای تبدیل مدل اولیۀ فوق به مدل دوگان ، متغیر متناظر با محدودیت (1 ) را درمسئلۀ دوگان با θ و متغیر های متناظر با محدودیت های ( 2 ) را با jλ نشان می دهیم. مدل ثانویه (دوگان) به صورت زیر در خواهد آمد :
1773583119352(3)
(4)
0(3)
(4)
lefttop
مدل فوق با تغییر اندکی به صورت زیر در می آید. این مدل رافرم پوششی مدل CCR ورودی محور می نامند .
4325344384810(5)
(6)
0(5)
(6)

دقت کنید که در مدل اولیه ، m ورودی و s خروجی و n واحد تصمیم گیرنده وجود داشت ، که براساس آن مسأله دوگان دارای (m+1 ) متغیر است که تعداد محدودیت های آن کمتر از مسأله اولیه و در نتیجه حل آن مستلزم حجم عملیات کمتری است . مدل پوششی همان دوگان مدل اولیه است .
2-7-1-6- مدل CCR خروجی محور
دریک مدل خروجی محور ، یک واحد درصورتی ناکارا است که امکان افزایش هر یک از خروجی ها بدون افزایش یک ورودی یا کاهش یک خروجی دیگر وجود داشته باشد.
مدل نسبت ( کسری ) CCR را که درابتدا توضیح داده شد، دوباره به شرح زیر می نویسیم:
2897091179041(1)
(2)
0(1)
(2)
lefttop
در مدل CCR خروجی محور، برای خطی کردن مدل غیرخطی فوق صورت کسر را برابر 1 می گیرند ومخرج آن را می نیمم می کنند. بدین ترتیب مدل ها به صورت زیر در می آیند:
2-7-1-7- مدل مضربی CCR خروجی محور
4517390707225(3)
(4)
0(3)
(4)

2-7-1-8- مدل پوششی CCR خروجی محور
برای ساختن مدل پوششی CCR خروجی محور ، دوگان مدل مضربی CCR خروجی محور را با قرار دادن θ و jλ به عنوان متغیر های دوگان متناظر با محدودیت اول ومحدودیت های دوم به صورت زیر به دست می آوریم:
4611757-39758(5)
(6)
0(5)
(6)

هدف ما کسب بیشترین مقدار خروجی است . در این مدل 1 < θ است و 1θ میزان کارایی را نشان می دهد .]1[
2-7-2- مدل BCC
بنکر، چارنز وکوپر باتغییر درمدل CCR ، مدل جدیدی را عرضه کردند که بر اساس حروف اول نام خانوادگی آنان به مدل BCC شهرت یافت . این مدل از انواع مدل های تحلیل پوششی داده ها است که به ارزیابی کارایی نسبی واحدهایی با بازده متغیر نسبت به مقیاس می پردازد. مدل های بازده به مقیاس ثابت محدود کننده تر از مدل های بازده به مقیاس متغیر هستند، زیرا مدل بازده به مقیاس ثابت واحد های کارای کمتری را در برمی گیرد ومقدار کارایی نیز کمتر می شود.
بازده به مقیاس
بازده به مقیاس مفهومی است بلند مدت ، که منعکس کننده نسبت افزایش درخروجی به ازای افزایش درمیزان ورودی ها است. این نسبت می تواند ثابت ، افزایشی یا کاهشی باشد.
: CRSبازده ثابت به مقیاس: بازده به مقیاس ثابت نسبت بازده ثابت به مقیاس وقتی صادق است که افزایش در ورودی به همان نسبت باعث افزایش درخروجی شود. به عنوان مثال اگر نیرویکار وسرمایه دو برابر شود، میزان محصول هم دو برابر گردد.
IRS بازده افزایشی به مقیاس : بازده افزایشی نسبت به مقیاس آن است که میزان خروجی به نسبتی بیش از میزان افزایش در ورودی ها ، افزایش یابد.
DRS بازده کاهشی به مقیاس : درصورتی که میزان افزایش در خروجی ها کمتر از نسبتی باشد که ورودی ها افزایش می یابند، بازده به مقیاس کاهشی ایجاد می شود.
PPS مجموعۀ امکان تولید : تمامی ترکیب های ممکن ازورودی ها وخروجی هارا مجموعۀ امکان تولید می نامند. به عنوان درشکل زیر نمایش داده y ویک خروجی x مثال منحنی نمایش تابع تولید که برای یک ورودی شده است. ]6[
2-7-2-1- مدل نسبت BCC
مدل نسبت BCC برای ارزیابی کارایی واحد تحت بررسی(صفر) به صورت زیر است:

ساختار مدل نسبت BCC همانند مدل نسبت CCR است که در تابع هدف مهم در تمامی قیود به صورت کسر یک متغیر آزاد در علامت w افزوده می شود .
2-7-2-2- مدل مضربی BCC ورودی محور
مدل مضربی BCC ورودی محور ، از حداکثر کردن صورت کسر و ثابت نگه داشتن مخرج کسر به وجود می آید .
مدل مضربی BCC ورودی محور به صورت زیر است :
4572000-2153(1)
(2)
0(1)
(2)

همانطور که ملاحظه می شود ، تفاوت این مدل با مدل CCR در وجود متغیر آزاد در علامت w است . علامت متغیر w در این مدل نوع بازده به مقیاس را به صورت زیر تعیین می کند :
الف ) هرگاه w<0 باشد ف نوع بازده به مقیاس ف کاهشی است .
ب ) هرگاه w=0 باشد ، نوع بازده به مقیاس ، ثابت است .
ج ) هرگاه w>0 باشد ، نوع بازده به مقیاس ، افزایشی است .]1[
2-7-2-3- مدل پوششی BCC ورودی محور
مدل پوششی BCC ورودی محور ، به صورت زیر است :
4707172209633(1)
(2)
(3)
0(1)
(2)
(3)

همان گونه که مشاهده می شود محدودیت متناظر با اضافه شدن متغیر آزاد در علامت w در مسأله اولیه ، محدودیت j=1nλj=1 است . در این مدل ، θ نسبت کاهش ورودی های واحد تحت بررسی را برای بهبود کارایی نشان می دهد.
یک واحد دراین مدل کارا است ، اگر وفقط اگر دوشرط زیر برای آن بر قرار باشد:
الف ) 1 = *θ
ب ) تمامی متغیرهای کمکی مقدار صفر داشته باشند
2-7-2-4- مدل مضربی BCC خروجی محور
مدل مضربی BCC خروجی محور ، به صورت زیر است :
4779534714072(1)
(2)
0(1)
(2)

2-7-2-5- مدل پوششی BCC خروجی محور
مدل پوششی BCC خروجی محور ، به صورت زیر می باشد :
4667416389613(1)
(2)
(3)
0(1)
(2)
(3)

2-7-3- مدل جمعی ( SBM= Slack Based Model )
مدل های ورودی محور درحالی که میزان خروجی ها را در سطح داده شده حفظ می کند، به طور مناسب ودر حد امکان نسبت به کاهش میزان ورودی ها اقدام می نماید. برعکس ، مدل های خروجی محور با حفظ میزان ورودی به طور متناسب ، خروجی ها افزایش می دهد
مدل جمعی ، مد لی است که همزمان کاهش ورودی ها وافزایش خروجی ها را مورد توجه قرار می دهد.
انواع این مدل به مدل به صورت جدول در زیر خلاصه شده است :
جدول 2-1- مدل جمعی

دید گاه ورودی محور، خروجی محور وبازده به مقیاس ثابت ومتغیر
بازده به مقیاس ، ارتباط بین تغییرات ورودی ها وخرجی های یک بنگاه، یک سیستم تولیدی یا یک سیستم خدماتی را بیان می کند. به طور واضح تر بازده به مقیاس به این پرسش ، پاسخ می دهد که اگر میزان منابع ومواد اولیۀ یک کارخانه دوبرابر شود میزان تولید یا ستاده آن چند برابر تغییر می کند؟ سه حالت زیرممکن است اتفاق بیفتد:
الف) با دوبرابر شدن میزان منابع ، میزان خروجی نیز دو برابر شود(بازده به مقیاس ثابت)
ب) با دوبرابر شدن میزان منابع ، میزان خروجی کمتر ازدوبرابر شود ( بازده به مقیاس کاهشی )
ج) با دوبرابر شدن میزان منابع ، میزان خروجی بیشتر ازدوبرابر شود( بازده به مقیاس افزایشی )
2-8- رتبه بندی واحد های کاراهمان گونه که قبلا بیان شد، درتحلیل پوششی داده ها، واحد های تحت بررسی به دو گروه کارا وناکارا تقسیم می شوند. واحد های کارا واحد هایی هستند که امتیاز کارایی آن ها برابر با یک است. واحد های ناکارا با کسب امتیاز کارایی قابل رتبه بندی هستند. اما واحد های کارا ، چون همگی دارای امتیاز یک می باشند، با استفاده از مدل های کلاسیک تحلیل پوششی داده ها قابل رتبه بندی نیستند. بدیهی است که رتبه بندی واحد های کارا به جهت تعیین کارا ترین واحد ها ، اهمیت زیادی دارد. لذا روش های زیر به منظور رتبه بندی این واحد ها ارایه شده است.
2-9- روش اندرسون – پیترسون درسال 1993 ، اندرسون وپترسون ، روشی را برای رتبه بندی واحد های کارا پیشنهاد کردند که تعیین کاراترین واحد را از میان واحد های کارا میسر می سازد. بااین روش امتیاز واحد های کارا می تواند ازیک بیشتر شود. به این ترتیب ، واحد های کارا نیز می توانند مانند واحد های ناکرا رتبه بندی شوند. رتبه بندی واحد های کارا به صورت زیر انجام می شود.
گام 1 : مدل مضربی ( یا پوششی ) CCR را برای واحد های تحت بررسی حل کنید تا واحد های کارا و غیر کارا مشخص شوند .
در صورتی که واحد تحت ارزیابی واحد k باشد ، مدل مضربی آن به صورت زیر است :

و مدل پوششی آن به صورت زیر است :

توجه : در مدل BCC ، محدودیت j=1nλj=1 به مجموعه محدودیت های فوق اضافه می شود .
گام 2 : فقط واحد های کارایی را درنظر بگیرید که امتیاز آن ها درقدم اول معادل یک شده وازمجموعۀ محدودیت قدم اول، محدودیت مربوط به آن واحد را از مدل مضربی متناظر به این محدودیت را از مدل پوششی حذف ودوباره مدل را حل کنید.
4658829347345 (7)
0 (7)
در حالتی که واحد k ، واحدی کارا باشد ، در این گام ، در مدل مضربی محدودیت شماره ی 3 به صورت زیر خواهد بود :

ودر مدل پوششی محدودیت های 5 و 6 به صورت زیر در می آیند:
457263566206(8)
(9)
0(8)
(9)

از آن جا که درگام 2 محدودیت مربوط به واحد تحت بررسی که حد بالای آن عدد 1 است ، حذف می شود، مقدار کارایی می تواند بیش از 1 شود. بدین ترتیب، واحدهای کارا با امتیاز هایی بالاتر از یک رتبه بندی می شوند. ]2[
2-10- شبکه های عصبی مصنوعی ( ANNs ) 2-10-1- مقدمه
در سالیان اخیر شاهد حرکتی مستمر از تحقیقات صرفاٌ تئوری به تحقیقات کاربردی علی الخصوص در پردازش اطلاعات برای مسائلی که یا برای آن ها راه حلی موجود نیست و یا به راحتی قابل حل نیستند ، بوده ایم . با عنایت به این حقیقت ، علاقه فزاینده ای در توسعه تئوریک سیستم های دینامیکی هوشمند مدل – آزاد که مبتنی بر داده های تجربی هستند ، ایجاد شده است . " شبکه های عصبی مصنوعی " جزء این دسته از سیستم های دینامیکی قرار دارند که با پردازش روی داده ها تجربی دانش یا قانون نهفته در ورای داده ها را به ساختار شبکه منتقل می کنند . به همین خاطر به این سیستم ها هوشمند گویند چرا که براساس محاسبات روی داده ها عددی یا مثال ها قوانین کلی را فرا می گیرند . این سیستم های مبتنی بر هوش محاسباتی سعی در مدل سازی ساختار نرو – سیناپتیکی مغز بشر دارند .
پیاده سازی ویژگی های شگفت انگیز مغز در یک سیستم مصنوعی ( سیستم دینامیکی ساخته دست بشر ) همیشه وسوسه انگیز و مطلوب بوده است . بسیارند محققینی که طی سال ها در این زمینه فعالیت ها کرده اند ، لیکن نتیجه این تلاش ها ، صرف نظر از یافته های ارزشمند ، باور هرچه بیشتر این اصل بوده است که " مغز بشر دست نیافتنی است . " با تأکید بر این نکته که گذشته از متافیزیک ، دور از دسترس بودن ایده آل " هوش طبیعی " را می توان با عدم کفایت دانش موجود بشر از فیزیولوژی عصبی پذیرفت باید اذعان داشت که عالی بودن هدف و کافی نبودن دانش موجود ، خود سبب انگیزش مقالات - تحقیقات بیشتر و بیشتر در این زمینه بوده و خواهد بود ، همچنان که امروزه شاهد بروز چنین فعالیت هایی در قالب شبکه های عصبی مصنوعی هستیم . اغلب آنهایی که با چنین سیستم هایی آشنایی دارند به اغراق آمیز بودن آن ها معترفند .
این اغراق ، اگر چه بیانگر مطلوبیت و نیز بعضی مشابهت های این گونه سیستم ها با سیستم های طبیعی است ، ولی می تواند تا حدی بین آنچه که سیستم های عصبی مصنوعی در اختیار قرار می دهد و آنچه که از نامشان بر می آید تناقض ایجاد نماید . لذا هنگام صحبت کردن در مورد اساس شبکه های عصبی ، باید حدود انتظارات و برداشت ها و شباهت ها را مشخص کرد .
2-10-2- شبکه عصبیجانوران پرسلولی برای ایجاد هماهنگی بین اعمال سلول ها و اندام های مختلف بدن خود نیاز به عوامل و دستگاه های ارتباطی دارند.دستگاه عصبی با ساختار و کار ویژه ی ای که دارد،در جهت ایجاد این هماهنگی به وجود آمده است. نورون ها پیام عصبی را به بافت ها و اندام های بدن ،مانند ماهیچه ها غده هاو نیز نورون های دیگر میفرستد و از این طریق با آنها ارتباط برقرار میکند. رشته هایی که از جسم سلولی نورون ها بیرون زده اند دو نوع اند:دندریت و آکسون دندریت ها پیام هارا دریافت میکنند و به جسم سلولی میبرند،آکسون ها پیام عصبی را از جسم سلولی به تا پایانه های آکسون هدایت میکند. وظایف دستگاه عصبی به ارتباط متقابل بین میلیون ها نورون وابسته است.در دستگاه عصبی دو بخش اصلی وجود دارد;دستگاه عصبی مرکزی و دستگاه عصبی محیطی.دستگاه عصبی مرکزی شامل مغز و نخاع است که مراکز نظارت بر اعمال بدن اند.این دستگاه اطلاعات دریافتی از محیط و درون بدن را تفسیر میکند و به آنها پاسخ میدهد.دستگاه عصبی مرکزی از دو بخش ماده ی خاکستری که بیشتر محتوی جسم سلولی نورون هاست و ماده ی سفید که اجتماع بخش های میلین دار نورون هاست،تشکیل شده است. دستگاه عصبی محیطی شامل تعداد زیادی عصب است که اطلاعات را جمع آوری میکند و به دستگاه عصبی مرکزی میبرد. مغز حدود۱۰۰میلیارد نورون است و حدود ۱.۵کیلوگرم وزن دارد.مغز شامل :مخ،مخچه و ساقه مغز است. مخ بزرگترین بخش مغز است وتوانایی یادگیری ،حافظه،وعملکرد هوشمندانه را دارد.مخچه مهمترین مرکز یادگیری حرکات لازم برای تنظیم حالت بدن و تعادل است. ساقه ی مغز در قسمت پایینی مغز قرار دارد و شامل مغز میانی،پل مغز و بصل النخاع است . نخاع درون ستون مهره ها از بصل النخاع تا کمر امتداد دارد.نخاع مغز را به دستگاه عصبی محیطی وصل میکند. دستگاه عصبی محیطی شامل۳۱جفت عصب نخاعی و ۱۲جفت عصب مغزی است.دستگاه عصبی محیطی شامل دو بخش پیکری که ارادی است و خودمختار که اعمال غیر ارادی مارا بر عهده دارد.دستگاه عصبی خود مختار شامل اعصاب پارا سمپاتیک و سمپاتیک میباشد که اعصاب پارا سمپاتیک باعث برقراری ارامش و اعصاب سمپاتیک در مواقع هیجانی روانی یا جسمی فعال میشوند. ]13[
2-10-3- معرفی شبکه عصبی مصنوعیشبکه عصبی مصنوعی یک سامانه پردازشی داده‌ها است که از مغز انسان ایده گرفته و پردازش داده‌ها را به عهدهٔ پردازنده‌های کوچک و بسیار زیادی سپرده که به صورت شبکه‌ای به هم پیوسته و موازی با یکدیگر رفتار می‌کنند تا یک مسئله را حل نمایند. در این شبکه‌ها به کمک دانش برنامه نویسی، ساختار داده‌ای طراحی می‌شود که می‌تواند همانند نورون عمل کند. که به این ساختارداده نورون گفته می‌شود. بعد باایجاد شبکه‌ای بین این نورونها و اعمال یک الگوریتم آموزشی به آن، شبکه را آموزش می‌دهند.
در این حافظه یا شبکه عصبی نورونها دارای دو حالت فعال (روشن یا ۱) و غیرفعال (خاموش یا ۰) اند و هر یال (سیناپس یا ارتباط بین گره‌ها) دارای یک وزن می‌باشد. یال‌های با وزن مثبت، موجب تحریک یا فعال کردن گره غیر فعال بعدی می‌شوند و یال‌های با وزن منفی، گره متصل بعدی را غیر فعال یا مهار (در صورتی که فعال بوده باشد) می کنند .]12[
2-10-4- تاریخچه شبکه‌های عصبی مصنوعیاز قرن نوزدهم به طور همزمان اما جداگانه از سویی نروفیزیولوزیست‌ها سعی کردند سامانه یادگیری و تجزیه و تحلیل مغز را کشف کنند و از سوی دیگر ریاضیدانان تلاش کردند تا مدل ریاضی بسازند که قابلیت فراگیری و تجزیه و تحلیل عمومی مسائل را دارا باشد. اولین کوشش‌ها در شبیه سازی با استفاده از یک مدل منطقی توسط مک کلوک و والتر پیتز انجام شد که امروزه بلوک اصلی سازنده اکثر شبکه‌های عصبی مصنوعی است. این مدل فرضیه‌هایی در مورد عملکرد نورون‌ها ارائه می‌کند. عملکرد این مدل مبتنی بر جمع ورودی‌ها و ایجاد خروجی است. چنانچه حاصل جمع ورودی‌ها از مقدار آستانه بیشتر باشد اصطلاحاً نورون برانگیخته می‌شود. نتیجه این مدل اجرای توابع ساده مثل AND و OR بود.
نه تنها نروفیزیولوژیست‌ها بلکه روان شناسان و مهندسان نیز در پیشرفت شبیه سازی شبکه‌های عصبی تاثیر داشتند. در سال ۱۹۵۸ شبکه پرسپترون توسط روزنبلات معرفی گردید. این شبکه نظیر واحدهای مدل شده قبلی بود. پرسپترون دارای سه لایه به همراه یک لایه وسط که به عنوان لایه پیوند شناخته شده می‌باشد، است. این سامانه می‌تواند یاد بگیرد که به ورودی داده شده خروجی تصادفی متناظر را اعمال کند.
سامانه دیگر مدل خطی تطبیقی نورون می‌باشد که در سال ۱۹۶۰ توسط ویدرو و هاف (دانشگاه استنفورد) به وجود آمد که اولین شبکه‌های عصبی به کار گرفته شده در مسائل واقعی بودند. آدالاین یک دستگاه الکترونیکی بود که از اجزای ساده‌ای تشکیل شده بود، روشی که برای آموزش استفاده می‌شد با پرسپترون فرق داشت.
در سال ۱۹۶۹ میسکی و پاپرت کتابی نوشتند که محدودیت‌های سامانه‌های تک لایه و چند لایه پرسپترون را تشریح کردند. نتیجه این کتاب پیش داوری و قطع سرمایه گذاری برای تحقیقات در زمینه شبیه سازی شبکه‌های عصبی بود. آنها با طرح اینکه طرح پرسپترون قادر به حل هیچ مساله جالبی نمی‌باشد، تحقیقات در این زمینه را برای مدت چندین سال متوقف کردند.
با وجود اینکه اشتیاق عمومی و سرمایه گذاری‌های موجود به حداقل خود رسیده بود، برخی محققان تحقیقات خود را برای ساخت ماشین‌هایی که توانایی حل مسائلی از قبیل تشخیص الگو را داشته باشند، ادامه دادند. از جمله گراسبگ که شبکه‌ای تحت عنوان آوالانچ را برای تشخیص صحبت پیوسته و کنترل دست ربات مطرح کرد. همچنین او با همکاری کارپنتر شبکه‌های ART را بنانهادند که با مدل‌های طبیعی تفاوت داشت. اندرسون و کوهونن نیز از اشخاصی بودند که تکنیک‌هایی برای یادگیری ایجاد کردند. ورباس در سال ۱۹۷۴ شیوه آموزش پس انتشار خطا را ایجاد کرد که یک شبکه پرسپترون چندلایه البته با قوانین نیرومندتر آموزشی بود.
پیشرفت‌هایی که در سال ۱۹۷۰ تا ۱۹۸۰ بدست آمد برای جلب توجه به شبکه‌های عصبی بسیار مهم بود. برخی فاکتورها نیز در تشدید این مساله دخالت داشتند، از جمله کتاب‌ها و کنفرانس‌های وسیعی که برای مردم در رشته‌های متنوع ارائه شد. امروز نیز تحولات زیادی در تکنولوژی ANN ایجاد شده‌است. ]14[
2-10-5- چرا از شبکه‌های عصبی استفاده می‌کنیم؟شبکه‌های عصبی با توانایی قابل توجه خود در استنتاج نتایج از داده‌های پیچیده می‌توانند در استخراج الگوها و شناسایی گرایش‌های مختلفی که برای انسان‌ها و کامپیوتر شناسایی آنها بسیار دشوار است استفاده شوند. از مزایای شبکه‌های عصبی می‌توان موارد زیر را نام برد:
یادگیری تطبیقی: توانایی یادگیری اینکه چگونه وظایف خود را بر اساس اطلاعات داده شده به آن و یا تجارب اولیه انجام دهد در واقع اصلاح شبکه را گویند.
خود سازماندهی: یک شبکه عصبی مصنوعی به صورت خودکار سازماندهی و ارائه داده‌هایی که در طول آموزش دریافت کرده را انجام دهد. نورون‌ها با قاعدهٔ یادگیری سازگار شده و پاسخ به ورودی تغییر می‌یابد.
عملگرهای بی‌درنگ: محاسبات در شبکه عصبی مصنوعی می‌تواند به صورت موازی و به وسیله سخت‌افزارهای مخصوصی که طراحی و ساخت آن برای دریافت نتایج بهینه قابلیت‌های شبکه عصبی مصنوعی است انجام شود.
تحمل خطا: با ایجاد خرابی در شبکه مقداری از کارایی کاهش می‌یابد ولی برخی امکانات آن با وجود مشکلات بزرگ همچنان حفظ می‌شود.
دسته بندی: شبکه‌های عصبی قادر به دسته بندی ورودی‌ها بر ای دریافت خروجی مناسب می‌باشند.
تعمیم دهی: این خاصیت شبکه را قادر می‌سازد تا تنها با برخورد با تعداد محدودی نمونه، یک قانون کلی از آن را به دست آورده، نتایج این آموخته‌ها را به موارد مشاهده از قبل نیز تعمیم دهد. توانایی که در صورت نبود آن سامانه باید بی نهایت واقعیت‌ها و روابط را به خاطر بسپارد.
پایداری-انعطاف پذیری: یک شبکه عصبی هم به حد کافی پایدار است تا اطلاعات فراگرفته خود را حفظ کند و هم قابلیت انعطاف و تطبیق را دارد و بدون از دست دادن اطلاعات قبلی می‌تواند موارد جدید را بپذیرد.
2-10-6- شبکه‌های عصبی در مقایسه با کامپیوترهای سنتی
یک شبکه عصبی به طور کلی با یک کامپیوتر سنتی در موارد زیر تفاوت دارد:
شبکه‌های عصبی دستورات را به صورت سری اجرا نکرده، شامل حافظه‌ای برای نگهداری داده و دستورالعمل نیستند.
به مجموعه‌ای از ورودی‌ها به صورت موازی پاسخ می‌دهند.
بیشتر با تبدیلات و نگاشت‌ها سروکار دارند تا الگوریتم‌ها و روش‌ها.
شامل ابزار محاسباتی پیچیده نبوده، از تعداد زیادی ابزارساده که اغلب کمی بیشتر از یک جمع وزن دار را انجام می‌دهند تشکیل شده‌اند.
شبکه‌های عصبی شیوه‌ای متفاوت برای حل مسئله دارند. کامپیوترهای سنتی از شیوه الگوریتمی برای حل مسئله استفاده می‌کنند که برای حل مسئله مجموعه‌ای از دستورالعمل‌های بدون ابهام دنبال می‌شود. این دستورات به زبان سطح بالا و سپس به زبان ماشین که سامانه قادر به تشخیص آن می‌باشد تبدیل می‌شوند. اگر مراحلی که کامپیوتر برای حل مسئله باید طی کند از قبل شناخته شده نباشند و الگوریتم مشخصی وجود نداشته باشد، سامانه توانایی حل مسئله را ندارد. کامپیوترها می‌توانند خیلی سودمندتر باشند اگر بتوانند کارهایی را که ما هیچ پیش زمینه‌ای از آنها نداریم انجام دهند. شبکه‌های عصبی و کامپیوترها نه تنها رقیب هم نیستند بلکه می‌توانند مکمل هم باشند. کارهایی وجود دارند که بهتر است از روش الگوریتمی حل شوند و همین طور کارهایی وجود دارند که جز از طریق شبکه عصبی مصنوعی قابل حل نمی‌باشند و البته تعداد زیادی نیز برای بدست آوردن بازده حداکثر، از ترکیبی از روش‌های فوق استفاده می‌کنند. به طور معمول یک کامپیوتر سنتی برای نظارت بر شبکه عصبی استفاده می‌شود. شبکه‌های عصبی معجزه نمی‌کنند، اگر به طور محسوس استفاده شوند کارهای عجیبی انجام می‌دهند. ] 12[
نورون مصنوعی
یک نورون مصنوعی سامانه‌ای است با تعداد زیادی ورودی و تنها یک خروجی. نورون دارای دو حالت می‌باشد، حالت آموزش و حالت عملکرد. در حالت آموزش نورون یاد می‌گیرد که در مقابل الگوهای ورودی خاص برانگیخته شود و یا در اصطلاح آتش کند. در حالت عملکرد وقتی یک الگوی ورودی شناسایی شده وارد شود، خروجی متناظر با آن ارائه می‌شود. اگر ورودی جزء ورودی‌های از پیش شناسایی شده نباشد، قوانین آتش برای بر انگیختگی یا عدم آن تصمیم گیری می‌کند.
از نورون‌های انسان تا نورون مصنوعی
با کنار گذاشتن برخی از خواص حیاتی نورون‌ها و ارتباطات درونی آنها می‌توان یک مدل ابتدایی از نورون را به وسیله کامپیوتر شبیه سازی کرد.
2-10-7- ساختار شبکه‌های عصبییک شبکه عصبی شامل اجزای سازنده لایه‌ها و وزن‌ها می‌باشد. رفتار شبکه نیز وابسته به ارتباط بین اعضا است. در حالت کلی در شبکه‌های عصبی سه نوع لایه نورونی وجود دارد:
لایه ورودی: دریافت اطلاعات خامی که به شبکه تغذیه شده‌است.
لایه‌های پنهان: عملکرد این لایه‌ها به وسیله ورودی‌ها و وزن ارتباط بین آنها و لایه‌های پنهان تعیین می‌شود. وزن‌های بین واحدهای ورودی و پنهان تعیین می‌کند که چه وقت یک واحد پنهان باید فعال شود.
لایه خروجی: عملکرد واحد خروجی بسته به فعالیت واحد پنهان و وزن ارتباط بین واحد پنهان و خروجی می‌باشد.
شبکه‌های تک لایه و چند لایه‌ای نیز وجود دارند که سازماندهی تک لایه که در آن تمام واحدها به یک لایه اتصال دارند بیشترین مورد استفاده را دارد و پتانسیل محاسباتی بیشتری نسبت به سازماندهی‌های چند لایه دارد. در شبکه‌های چند لایه واحدها به وسیله لایه‌ها شماره گذاری می‌شوند (به جای دنبال کردن شماره گذاری سراسری).
هر دو لایه از یک شبکه به وسیله وزن‌ها و در واقع اتصالات با هم ارتباط می‌یابند. در شبکه‌های عصبی چند نوع اتصال و یا پیوند وزنی وجود دارد: پیشرو: بیشترین پیوندها از این نوع است که در آن سیگنال‌ها تنها در یک جهت حرکت می‌کنند. از ورودی به خروجی هیچ بازخوردی (حلقه) وجود ندارد. خروجی هر لایه بر همان لایه تاثیری ندارد.
پسرو: داده‌ها از گره‌های لایه بالا به گره‌های لایه پایین بازخورانده می‌شوند.
جانبی: خروجی گره‌های هر لایه به عنوان ورودی گره‌های همان لایه استفاده می‌شوند. ] 10[
2-10-8- تقسیم بندی شبکه‌های عصبیبر مبنای روش آموزش به چهار دسته تقسیم می‌شوند:
وزن ثابت: آموزشی در کار نیست و مقادیر وزن‌ها به هنگام نمی‌شود. کاربرد: بهینه سازی اطلاعات (کاهش حجم، تفکیک پذیری و فشرده سازی) و حافظه‌های تناظری
آموزش بدون سرپرست: وزن‌ها فقط بر اساس ورودی‌ها اصلاح می‌شوند و خروجی مطلوب وجود ندارد تا با مقایسه خروجی شبکه با آن و تعیین مقدار خطا وزن‌ها اصلاح شود. وزن‌ها فقط بر اساس اطلاعات الگوهای ورودی به هنگام می‌شوند. هدف استخراج مشخصه‌های الگوهای ورودی بر اساس راهبرد خوشه یابی و یا دسته‌بندی و تشخیص شباهت‌ها (تشکیل گروه‌هایی با الگوی مشابه) می‌باشد، بدون اینکه خروجی یا کلاس‌های متناظر با الگوهای ورودی از قبل مشخص باشد. این یاد گیری معمولاً بر پایه شیوه برترین هم خوانی انجام می‌گیرد. شبکه بدون سرپرست وزن‌های خود را بر پایه خروجی حاصل شده از ورودی تغییر می‌دهد تا در برخورد بعدی پاسخ مناسبی را برای این ورودی داشته باشد. در نتیجه شبکه یاد می‌گیرد چگونه به ورودی پاسخ بدهد. اصولاً هدف این است که با تکنیک نورون غالب نورونی که بیشترین تحریک آغازین را دارد برگزیده شود. بنابر این در شبکه‌های بدون سرپرست یافتن نورون غالب یکی از مهمترین کارها است.
آموزش با سرپرست: به ازای هر دسته از الگوهای ورودی خروجی‌های متناظر نیز به شبکه نشان داده می‌شود و تغییر وزن‌ها تا موقعی صورت می‌گیرد که اختلاف خروجی شبکه به ازای الگوهای آموزشی از خروجی‌های مطلوب در حد خطای قابل قبولی باشد. در این روش‌ها یا از خروجی‌ها به وزن‌ها ارتباط وجود دارد یا خطا به صورت پس انتشار از لایه خروجی به ورودی توزیع شده‌است و وزن‌ها اصلاح می‌شوند. هدف طرح شبکه‌ای است که ابتدا با استفاده از داده‌های آموزشی موجود، آموزش ببیند و سپس با ارائه بردار ورودی به شبکه که ممکن است شبکه آن را قبلاً فراگرفته یا نگرفته باشد کلاس آن را تشخیص دهد. چنین شبکه‌ای به طور گسترده برای کارهای تشخیص الگو به کار گرفته می‌شود.
آموزش تقویتی: کیفیت عملکرد سامانه به صورت گام به گام نسبت به زمان بهبود می‌یابد. الگوهای آموزشی وجود ندارد اما با استفاده از سیگنالی به نام نقاد بیانی از خوب و یا بد بودن رفتار سامانه بدست می‌آید (حالتی بین یادگیری با سرپرست و بدون سرپرست).
2-10-9- کاربرد شبکه‌های عصبیشبکه‌های عصبی مصنوعی دارای دامنه کاربرد وسیعی می‌باشند از جمله سامانه‌های آنالیز ریسک، کنترل هواپیما بدون خلبان، آنالیز کیفیت جوشکاری، آنالیز کیفیت کامپیوتر، آزمایش اتاق اورژانس، اکتشاف نفت و گاز، سامانه‌های تشخیص ترمز کامیون، تخمین ریسک وام، شناسایی طیفی، تشخیص دارو، فرایندهای کنترل صنعتی، مدیریت خطا، تشخیص صدا، تشخیص هپاتیت، بازیابی اطلاعات راه دور، شناسایی مین‌های زیردریایی، تشخیص اشیاء سه بعدی و دست نوشته‌ها و چهره و... در کل می‌توان کاربردهای شبکه‌های عصبی را به صورت زیر دسته بندی کرد: تناظر (شبکه الگوهای مغشوش وبه هم ریختهرا بازشناسی می‌کند)، خوشه یابی، دسته بندی، شناسایی، بازسازی الگو، تعمیم دهی (به دست آوردن یک پاسخ صحیح برای محرک ورودی که قبلاً به شبکه آموزش داده نشده)، بهینه سازی. امروزه شبکه‌های عصبی در کاربردهای مختلفی نظیر مسائل تشخیص الگو که خود شامل مسائلی مانند تشخیص خط، شناسایی گفتار، پردازش تصویر و مسائلی از این دست می‌شود و نیز مسائل دسته بندی مانند دسته بندی متون یا تصاویر، به کار می‌روند. در کنترل یا مدل سازی سامانه‌هایی که ساختار داخلی ناشناخته یا بسیار پیچیده‌ای دارند نیز به صورت روز افزون از شبکه‌های عصبی مصنوعی استفاده می‌شود. به عنوان مثال می‌توان در کنترل ورودی یک موتور(کنترل‌کننده موتور) از یک شبکه عصبی استفاده نمود که در این صورت شبکه عصبی خود تابع کنترل را یاد خواهد گرفت. کاربرد مناسب تر شبکه عصبی ( در مقایسه با روش هایی از قبیل PID )برای کنترل یک سیستم دور موتور در برابر تغییرات ناگهانی بار و زمان پاسخ دهی نیز مطرح شده است .
2-10-10- معایب شبکه‌های عصبیبا وجود برتری‌هایی که شبکه‌های عصبی نسبت به سامانه‌های مرسوم دارند، معایبی نیز دارند که مقالهگران این رشته تلاش دارند که آنها را به حداقل برسانند، از جمله:
قواعد یا دستورات مشخصی برای طراحی شبکه جهت یک کاربرد اختیاری وجود ندارد.
در مورد مسائل مدل سازی، صرفاً نمی‌توان با استفاده از شبکه عصبی به فیزیک مساله پی برد. به عبارت دیگر مرتبط ساختن پارامترها یا ساختار شبکه به پارامترهای فرایند معمولاً غیر ممکن است.
دقت نتایج بستگی زیادی به اندازه مجموعه آموزش دارد.
آموزش شبکه ممکن است مشکل ویا حتی غیر ممکن باشد.
پیش بینی عملکرد آینده شبکه (عمومیت یافتن) آن به سادگی امکان پذیر نیست. ]11[
2-10-11- مسائل مناسب برای یادگیری شبکه های عصبیخطا در داده های آموزشی وجود داشته باشد. مثل مسائلی که داده های آموزشی دارای نویز حاصل از دادهای سنسورها نظیر دوربین و میکروفن ها هستند.
مواردی که نمونه ها توسط مقادیر زیادی زوج ویژگی-مقدار نشان داده شده باشند. نظیر داده های حاصل از یک دوربین ویدئوئی.
تابع هدف دارای مقادیر پیوسته باشد.
زمان کافی برای یادگیری وجود داشته باشد. این روش در مقایسه با روشهای دیگر نظیر درخت تصمیم نیاز به زمان بیشتری برای یادگیری دارد.
نیازی به تعبیر تابع هدف نباشد. زیرا به سختی میتوان اوزان یادگرفته شده توسط شبکه را تعبیر نمود. ]13[
پرسپترون
نوعی از شبکه عصبی برمبنای یک واحد محاسباتی به نام پرسپترون ساخته میشود. یک پرسپترون برداری از ورودیهای با مقادیر حقیقی را گرفته و یک ترکیب خطی از این ورودیها را محاسبه میکند. اگر حاصل از یک مقدار آستانه بیشتر بود خروجی پرسپترون برابر با 1 و در غیر اینصورت معادل -1 خواهد بود.
2798859258031

شکل 2-1- پرسپترون یک لایه
2-11- یادگیری یک پرسپترونخروجی پرسپترون توسط رابطه زیر مشخص میشود :
453199511650(1)
0(1)

که برای سادگی آنرا میتوان بصورت زیر نشان داد:
4596959442(2)
(3)
0(2)
(3)

یادگیری پرسپترون عبارت است از:
پیدا کردن مقادیردرستی برای W ، بنابراین فضای فرضیه H در یادگیری پرسپترون عبارت است ازمجموعه تمام مقادیر حقیقی ممکن برای بردارهای وزن.
توانائی پرسپترون
پریسپترون را میتوان بصورت یک سطح تصمیم hyperplane در فضای n بعدی نمونه ها در نظر گرفت. پرسپترون برای نمونه های یک طرف صفحه مقدار 1 و برای مقادیر طرف دیگر مقدار -1 بوجود میاورد.

شکل 2-2- پرسپترون
توابعی که پرسپترون قادر به یادگیری آنها میباشد
یک پرسپترون فقط قادر است مثالهائی را یاد بگیرد که بصورت خطی جداپذیر باشند. اینگونه مثالها مواردی هستند که بطور کامل توسط یک hyperplaneقابل جدا سازی میباشند.

شکل 2-3- توابعی که پرسپترون قادر به یادگیری آنها میباشد
توابع بولی و پرسپترون
یک پرسپترون میتواند بسیاری از توابع بولی را نمایش دهد نظیر AND, OR, NAND, NOR ، اما نمیتواند XORرا نمایش دهد. در واقع هر تابع بولی را میتوان با شبکه ای دوسطحی از پرسپترونها نشان داد.

پاسخ دهید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *